FESCUE-GREEN (2011-2015) Best management of red fescue (Festuca rubra) golf greens for high sustainability and playability

> Project core group: Trygve S. Aamlid Anne Mette Dahl Jensen Per Rasmussen Agnar Kvalbein

• Construction of the second secon

RODSVINGEL

'FESCUE GREEN' - OBJECTIVES

Main objective

To elucidate strategies for management of red fescue greens for optimal playability and sustainability

Sub goals

- 1. To determine the influence of **irrigation strategies and seasonal fertilizer distribution** on turf quality, playability and competition from *Poa annua*.
- 2. To clarify the impact of increased **mowing height**, **mowing frequency**, and to what extent mowing can be replaced by light weight **rolling** on a mature golf green with a predominant cover of red fescue.
- 3. To initiate a study on the long-term effect of a well-defined and widely used compost ('Green Mix') in the rootzone or in the topdressing sand on turf quality, colonization of mycorrhiza, disease incidence and competition against *Poa annua*.
- 4. To actively disseminate results to the golf industry through one article per year in the Nordic greenkeeper magazines, two scientific papers in peer-reviewed journals, and **two workshops /seminars** on fescue management.

Red fescue workshop Oct. 2012, Copenhagen

OUTCOME OF **FESCUE** WORKSHOP

R&A

RED FESCUE MANAGEMENT

GUIDELINES BASED ON GREENKEEPERS' EXPERIENCES

Sterf

'FESCUE GREEN'

Reference group

- 1 March 2012:
 Copenhagen University
- 28 June 2013: NIBIO Landvik
- 4 July 2014: Smørum GC, Copenhagen

FINANCE BUDGET

Funding	kSEK					
	2011	2012	2013	2014	2015	Sum
STERF	300	600	600	650	300	2450
Bioforsk: Depreciation and machinery	15	130	100	100		345
Copenhagen University (free hours)	20	10	15	50	15	110
Smørum GC (P. Rasmussen's work)	14	14	14	28	28	98
Høst AS, Norway						
(Rootzone materials and topdressing)	33	33				66
Solum Group, Denmark						
(Rootzone materials and topdressing)	33	33				66
Lindholm Maskiner AB						
(Free rent of light weight rollers)	15	30	30			75
Svenningsen Maskiner						
(Free rent of triplex mower)	23	45	45			113
TOTAL	453	895	804	828	343	3323

Subproejct 3: Effects of two different rootzone mixtures and topdressing materials on red fescue performance

STERF Low input Seminar, Copenhagen 5-6 Oct. 2015

Trygve S. Aamlid

DRAINAGE OF BOGS FOR PEAT HARVEST IS NOT SUSTAINABLE

Globally, the pool of carbon in peatlands is about the same as in the atmosphere Drainage + peat harvest and/or cultivation stands for about 10 % of CO₂ emisssions in Norway

Composted garden waste:

- A valuable resource
- Replacement of peat

OBJECTIVES

To determine effects of Green Mix garden compost in the rootzone and/or topdress sand during grown-in and maintenance of red fescue putting greens

- 1. To clarify effects on Green Mix compost on **soil texture and physica**l conditions, notably infiltration rates
- 2. To quantify the potential of Green Mix in rootzone and topdress to reduce the **fertilizer requirement during grow-in and maintenance.**
- 3. To clarify the effects of Green Mix on visual quality, playing quality and competition from *Poa annua* on fescue greens
- 4. To study natural root colonization by **mycorrhiza** on compostamended and peat-amended rootzones.

The exeriment was conducted in the field lysimeter facility at Landvik, South East Norway

EXPERIMENTAL TREATMENTS

Factor 1: Rootzone at establishement in Aug. 2011

- A. Peat: USGA-sand + 17% (v/v) peat, humification class 6 (von Post)
- B. Green Mix: USGA-sand + 17.5% garden compost

Factor 2: Top dressing sand (starting in spring 2012)

- 1. Straight sand (0.2-0.8 mm)
- 2. Green Mix Topdress: 0.2-0.8 mm + 10 vol % garden compost

Randomized complete block design, four blocks (replicates)

August 2011: Existing turf and rootzone removed down to gravel layer, new rootzone material added

CHEMICAL SOIL ANALYSES OF ROOTZONE AND TOPDRESSING MATERIALS

	Rootzone		Topdress	
	Peat	Green Mix	Straight sand	Green Mix
		(Høst AS)		(Solum)
Ignition loss, %	2.85	2.63	0.10	0.95
CEC, meq/100 g dry soil	3.0	5.4	0.3	5.3
Total C, % of DM	1.5	1.9	< 0.5	0.58
Total N, % of DM	<0.1	0.14	<0.11	<0.11
Mineral-N, mg/100 g dry soil	0.06	3.00	0.17	3.2
pH (H ₂ O)	5.6	7.8	6.5	8.0
P-AL, mg/100 g dry soil	1.7	6.4	<1.0	5.9
K-AL, mg/100 g dry soil	2.3	25	<2.0	24
Mg-AL, mg/100 g dry soil	2.4	6.8	<1.0	4.9
Ca-AL, mg/100 g dry soil	14	95	<10	111
Na-AL, mg/100 g dry soil	2.2	3.1	< 5.0	< 5.0
Cu, mg/kg dry soil	0.26	1.3	<0.20	0.84
B, mg/kg dry soil	<0.10	0.56	0.36	<0.10
Fe, mg/kg dry soil	6.7	2.5	10	3.8
Mn, mg/kg dry soil	4.5	0.60	< 0.50	< 0.5
Zn, mg/kg dry soil	<1.0	6.7	< 1.0	4.4
₩9, mg/kg dry soil	<0.2	<0.2	<0.20	<0.20

ROOTZONE TEXTURE: (GRAIN SIZE DISTRIBUTION)

	Gravel >2 mm	Coarse sand 0.6-2 mm	Medium sand 0.2-0.6 mm	Fine sand 0.06-0.2 mm	Silt 0.002- 0.06 mm	Clay < 0.002 mm
Peat	2.1	22.1	52.2	21.5	1.7	0.9
Green Mix	1.3	11.9	61.2	21.5	3.2	0.9

Note: The composted garden waste in Green Mix contains not only organic matter, but also fine mineral particles !

Implications?

SEEDING ON 17 AUG. 2011

Seed mixture

	%
Slender creeping red fescue Cezanne	38.8
Chewings fescue Musica	19.4
Chewings fescue Bargreen	19.4
Chewings fescue Calliope	19.4
Poa annua unspecified	3.0
Total	100

Seeding rate: 3 kg per 100 m²

Fertilizer rates to peat-amended rootzones during grow-in 17 Aug - 15 Nov. 2011:

	kg	kg per 100 m2			
	Preseeding organic fertilizer	Weekly inputs, liquid or granuar	Total		
Ν	0.85	0.80	1.65		
Ρ	0.10	0.11	0.21		
K	0.75	0.67	1.42		

BASED ON THE SOIL ANALYSES AND PRELIMINARY DATA, FERTILIZER INPUTS DURING GROW-IN WERE REDUCED BY 50 % ON GREEN MIX ROOTZONES

Green Mix

Green Mix

Peat

Green Mix

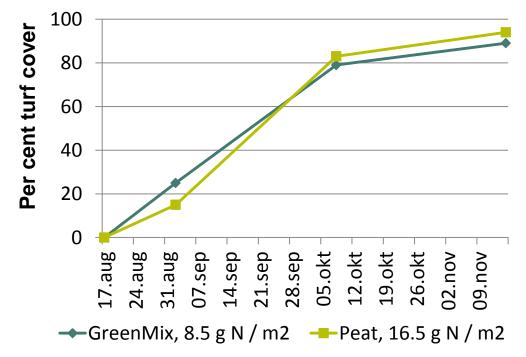

Grow-in, 2011

Photo shows Field emergence after two weeks, 1 Sep. 2011

(Before starting with different fertilizer levels)

Grow-in phase: Development of turf cover

Establishment by end of grow-in year, Dec. 2011: Double rate of fertilizer <u>more than</u> compensated for lower nutrient content in rootzones with peat

Peat

Green Mix

MAINTENANCE OF YOUNG GREEN, 2012

- Same type and amount of fertilizer to all plots (kg / 100 m2): The fertilizer plan said : N: 1.30 P: 0.6 K: 1.08 Liquid fertilizers: Arena Crystal + Greenmaster 10-0-10.
- Topdressing according to experimental plan) every second week from 24 April to 10 Oct. (13 times)
 0.63 mm (L/m2) sand per dressing → 8.2 mm over the season
- Aeration with 6 mm solid tines three times (23 April, 5 June, 14 Aug.)
- Mowing: To 5 mm three times per week.
- Wear / rolling: 2 runs per week from early July to early Oct: Equivalent to 20000 rounds of golf

Peat + GMix Gmix + Sand Peat + Sand

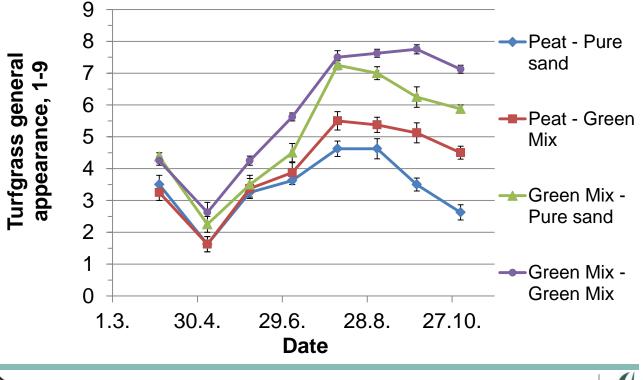
IDID IDID D

Gmix + GMix

Experiment after first application of different topdressing materials 24 April 2012

Gmix + GMix

Peat + Sand


Gmix + Sand

Peat + GMix

RESULTS 2012: VISUAL TURFGRASS QUALITY (1-9)

25 Aug 2012: Good appearance of all plots

Gmix + Gmix

Gmix + Gmix

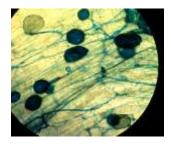
Peat + Sand

Gmix + Sand

Peat+ Gmix

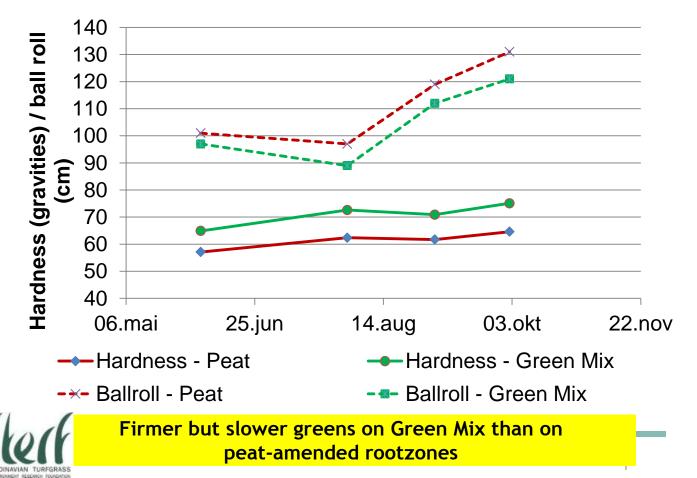
Gmix + Gmix

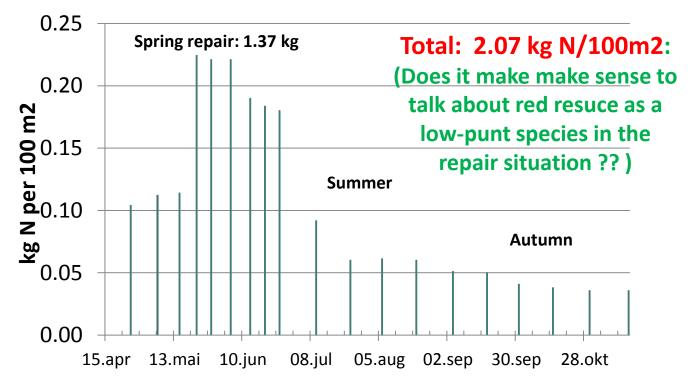
Peat + Sand


8 Oct. 2012: Strong visual effect in autumn

ROOT DEVELOPMENT AND NATURAL COLONIZATION BY MYCORRHIZA

	% of roots colonized by mycorrhiza			
	18 Oct. 2011	5 June 2012	18 Oct. 2012	
Peat	2.1	0.9	21.6	
Green Mix	1.9	1.2	58.7	
Sign.	ns	ns	***	




Green speed and surface hardness, 2012

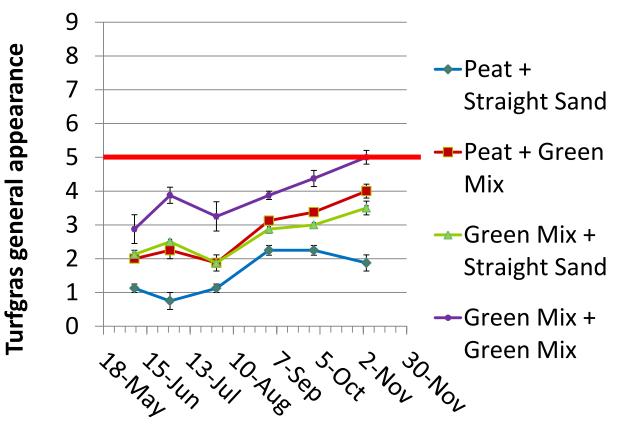
Winter 2012-2013: 100 days of ice encasement

8 April 2013

N inputs to all plots in 2013

1 June 2013

28 July 2013


Rootzone: Green Mix Dressing: Green Mix

Rootzone: Peat Dressing: Straight sand

Rootzone: Peat Dressing: Green Mix Rootzone: Green Mix Dressing: Straight sand

5 Sep. 2013

Visual turf quality 2013

S NIBIO

Rootzone: Peat Dressing: Green Mix

Rootzone: Green Mix Dressing: Straight sand Rootzone: Green Mix Dressing: Green Mix

Rootzone: Peat Dressing: Straight sand

1 Oct. 2013

Observations of playing quality in 2013

	Hardness, Gravities, 2.25 kg hammar (6 obs.)	Ball roll, cm (3 obs.)
Main effect of ro	ootzone	
Peat	65.4	112
Gmix	72.1	108
P-value	0.0007	0.14
Main effect of to		
Sand	69.0	107
Gmix	68.5	113
P-value	>0.15	0.062

- Firmer but slower greens on Green Mix than on peat-amended rootzones
- Improved green speed after using Green Mix topdress

2014 VISUAL TURF QUALITY

(AFTER A MILD WINTER)

26.01.2014 27.03.2014 26.05.2014 25.07.2014 23.09.2014 22.11.2014

Peat + Straight Sand
 Peat + Green Mix
 Green Mix + Straight Sand
 Green Mix + Green Mix

Visual quality / density, July 2014

Green Mix rootzone + Green Mix topdress

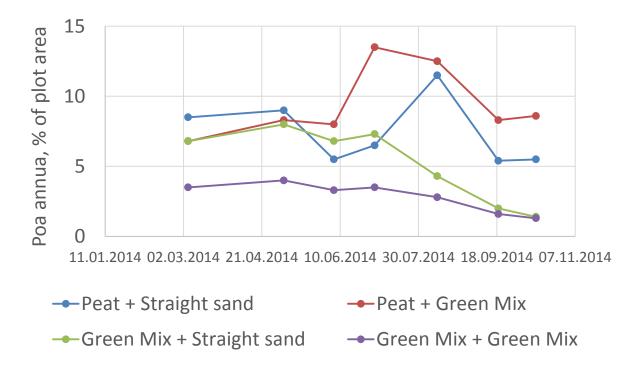
Green Mix rootzone + Straight Sand topdress Peat rootzone + Green Mix topdress Peat rootzone + Green Mix topdress

Hypothesis based on observations at Smørum GC, Copenhagen:

Dressing with Green Mix on the top of a lowfertility rootzone may lead to more competition from *Poa annua* ?

Soil layering effects of using Green Mix topdress on Peat-amended rootzones ?

	рН	P-AL	K-AL	Mg-AL	Ca-AL
		Start	values August	2011	
Peat rootzone	5.6	1.7	2.3	2.4	14
Green Mix					
Topdress	8.0	5.9	24.0	4.9	111
Depth	Soil ana	alyses after t	wo years (17 m	im topdress	added)
0-2 cm	6.3	1.3	4.5	2.3	32
2-5 cm	6.2	1.4	4.1	2.3	34
5-25 cm	6.2	1.7	4.4	2.4	29


Soil analyses taken in October 2013 did not confirm the hypothesis. Assessments in 2012 and 2013 also did not show more *Poa annua* after use of Gmix topdress

But in summer 2014, after two years' use of Green Mix topdress on top of peat-amended rootzones, we started to see more *Poa annua*

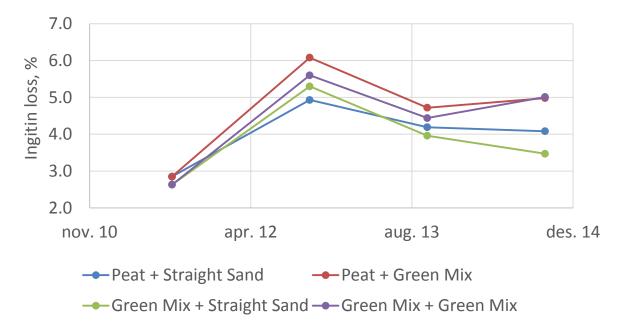
MORE *POA ANNUA* WITH GREEN MIX TOPDRESS ON TOP OF PEAT ROOTZONE

Control of organic matter ?

Green Mix rootzone + Green Mix topdress

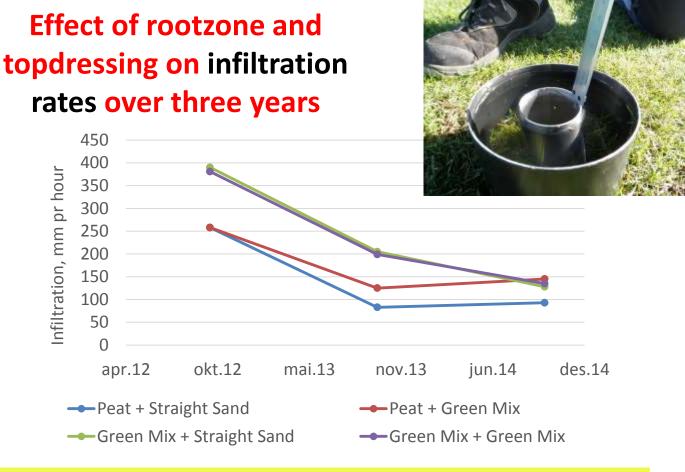
Green Mix rootzone + Straight Sand Green Mix

topdress


Peat rootzone +

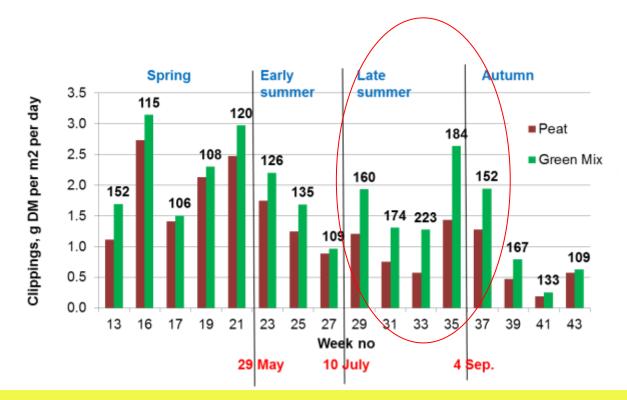
topdress

Peat rootzone + **Strangt Sand** topdress


Thatch/mat layer, July 2014

Effect of rootzone and topdressing on ignition loss of the 0-2 cm top layer during three years

Significant effect of topdressing at all measurements



Significantly better infiltration on Green Mix rootzones in 2012 and 2013

EFFECT OF ROOTZONE ON DAILY WEIGHT OF CLIPPINGS, 2012

Most mineralization from GreenMix in late summer

EFFECT OF ROOTZONE COMPOSTION ON NUTRIENT CONCENTRATION IN CLIPPINGS, 2012 (% OF DRY WEIGHT)

	Nitrogen (N)		Ph	osphorus	(P)	Potassium (K)			
	Peat	Green Mix	AN- OVA	Peat	Green Mix	AN- OVA	Peat	Green Mix	AN- OVA
Spring	2.72	3.07 (113)	**	0.35	0.38 (109)	NS	1.64	1.70 (104)	NS
Early summer	2.94	3.26 (111)	**	0.35	0.45 (129)	***	1.80	1.91 (106)	(*)
Late summer	3.02	3.56 (118)	**	0.40	0.59 (148)	***	2.09	2.46 (117)	(*)
Autumn	2.95	3.55 (<u>134</u>)	***	0.42	0.60 (143)	***	1.89	2.25 (119)	***
Whole year mean	2.91	3.36 (115)		0.38	0.51 (132)		1.86	2.08 (112)	
Relative to nitrogen	100	100		13	15		64	62	

In almost perfect agreement with Tom Ericsson et al. (2012a,b)

SP NIBIO

POLLUTION OF GROUND AND SURFACE WATER ?

IN RELATION TO EU'S NITRATE DIRECTIVE

EU's-Nitrate directive for drinking water Max 50 mg nitrate = 11 mg/NO3-N pr liter

Grow-in (3-4 weeks after seeding), 2011:

 Average concentration of NO3-N in leaching water from Green Mix plots 16.5 mg/l (max value: 24)

Established turf, 2012:

 Average concentration of NO3-N in leaching water from Green Mix plots: 1.4 mg/l (max value: 8.7)

Winter-damaged turf, spring 2013:

 Average concentration of NO₃-N in leaching water from Green Mix plots, spring 2013: 11.7 mg/l (max value: 18)

Nutrient loss in clippings and drainage water from rootzones with peat and Green Mix in 2012 and 2013 (kg pr 100 m²)

	N		Р			К		
	Peat	GMix	Torv	GMix		Torv	GMix	
2012:	Fertili	zer input	Fertilize	er input		Fertiliz	er input	
Whole season	1.30		0.06			1.05		

Nutrient loss in clippings and drainage water from rootzones with peat and Green Mix in 2012 and 2013 (kg pr 100 m²)

	N		Р			K		
	Peat	GMix	Torv	GMix		Torv	GMix	
2012:	Fertiliz	zer input	Fertilize	er input		Fertiliz	er input	
Whole season	1.30		0.06			1.05		
Removed in clippings	0.84	1.29	0.11	0.19		0.52	0.79	
Leaching	0.08	0.22	0.09	0.19		0.67	2.14	

Nutrient loss in clippings and drainage water from rootzones with peat and Green Mix in 2012 and 2013 (kg pr 100 m²)

	N		Р			К		
	Peat	GMix	Torv	GMix		Torv	GMix	
2012:	Fertilizer input		Fertilizer input			Fertilizer input		
Whole season	1	30	0.06			1.05		
Removed in clippings	0.84	1.29	0.11	0.19		0.52	0.79	
Leaching	0.08	0.22	0.09	0.19		0.67	2.14	
2013:	Fertilizer input		Fertilizer input			Fertilizer input		
25 June – 1 Nov.	0.70		0.07			0.59		
Removed in clippings	0.53	0.79	0.08	0.12		0.45	0.63	
Leaching	0.07	0.11	0.01	0.12		0.53	0.70	

CONCLUSIONS

- 1. Garden compost contains not only organic matter, but also fine mineral particles. Turfgrass managers should therefore have the rootzone texture analysed after mixing with compost.
- 2. Despite the higher content of fines, the Green Mix rootzone maintained better infiltration than the peat-amended rootzone during the first two years after establishment. The Green Mix rootzone nevertheless have a harder surface than the peat-amended rootzone
- 3. Green Mix in the rootzone reduced the N requirement for grow-in by a little less than 50 %, probably more like 30-40 %.
- 4. The Green Mix rootzone gave better visual turf quality throughout the trial, and a positive effect of Green Mix topdress started to appear already 1-2 months after applications started.
- 5. On both rootzones, it took ½ 1 year from sowing for fescue roots to be significantly colonized by mycorrhiza. Once coloninzation started, more roots were colonized on the Green Mix rootzone than on peat-amended rootzone, despite its higher content of P.

CONCLUSIONS (CONTD.)

- 6. The producer of Green Mix topdress suggests that regular dressing will release 0.3-0.4 kg N/100m2/yr, or 30-40 % of the N requirement to red fescue. Our research suggests that the contribution of N from mineralization may be even higher and that the use Green Mix topdress will completely eliminate the need for P fertilizers. With Green Mix rootzones, K inputs can be omitted in the first year, and over time the K requirement will probably ble 40-50 % less if Gree Mix topdress is used regularly.
- 7. Savings in fertilizer due to Green Mix topdress will be greater in late summer and autumn than in spring and early summer.
- 8. There are indications that the use of Green Mix topdress on top of a less fertile rootzone may result in more *Poa annua* over time, but this requires further research.
- Leaching of nitrate from golf greens is neglegible as long as there is a complete and growing turf cover. NO₃- leaching mainly occurs during grow-in and after damages, e.g. due to tough winters.

TAKE HOME MESSAGE: GREEN MIX CAN BE RECOMMENDED BOTH IN THE ROOTZONE AND IN THE TOPDRESS ON **FESCUE GREENS.**

NEED FOR STUDIES OVER LONGER PERIOD !